commit | author | age
|
6e1425
|
1 |
/* |
H |
2 |
** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $ |
|
3 |
** Opcodes for Lua virtual machine |
|
4 |
** See Copyright Notice in lua.h |
|
5 |
*/ |
|
6 |
|
|
7 |
#ifndef lopcodes_h |
|
8 |
#define lopcodes_h |
|
9 |
|
|
10 |
#include "llimits.h" |
|
11 |
|
|
12 |
|
|
13 |
/*=========================================================================== |
|
14 |
We assume that instructions are unsigned numbers. |
|
15 |
All instructions have an opcode in the first 6 bits. |
|
16 |
Instructions can have the following fields: |
|
17 |
`A' : 8 bits |
|
18 |
`B' : 9 bits |
|
19 |
`C' : 9 bits |
|
20 |
`Bx' : 18 bits (`B' and `C' together) |
|
21 |
`sBx' : signed Bx |
|
22 |
|
|
23 |
A signed argument is represented in excess K; that is, the number |
|
24 |
value is the unsigned value minus K. K is exactly the maximum value |
|
25 |
for that argument (so that -max is represented by 0, and +max is |
|
26 |
represented by 2*max), which is half the maximum for the corresponding |
|
27 |
unsigned argument. |
|
28 |
===========================================================================*/ |
|
29 |
|
|
30 |
|
|
31 |
enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */ |
|
32 |
|
|
33 |
|
|
34 |
/* |
|
35 |
** size and position of opcode arguments. |
|
36 |
*/ |
|
37 |
#define SIZE_C 9 |
|
38 |
#define SIZE_B 9 |
|
39 |
#define SIZE_Bx (SIZE_C + SIZE_B) |
|
40 |
#define SIZE_A 8 |
|
41 |
|
|
42 |
#define SIZE_OP 6 |
|
43 |
|
|
44 |
#define POS_OP 0 |
|
45 |
#define POS_A (POS_OP + SIZE_OP) |
|
46 |
#define POS_C (POS_A + SIZE_A) |
|
47 |
#define POS_B (POS_C + SIZE_C) |
|
48 |
#define POS_Bx POS_C |
|
49 |
|
|
50 |
|
|
51 |
/* |
|
52 |
** limits for opcode arguments. |
|
53 |
** we use (signed) int to manipulate most arguments, |
|
54 |
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) |
|
55 |
*/ |
|
56 |
#if SIZE_Bx < LUAI_BITSINT-1 |
|
57 |
#define MAXARG_Bx ((1<<SIZE_Bx)-1) |
|
58 |
#define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */ |
|
59 |
#else |
|
60 |
#define MAXARG_Bx MAX_INT |
|
61 |
#define MAXARG_sBx MAX_INT |
|
62 |
#endif |
|
63 |
|
|
64 |
|
|
65 |
#define MAXARG_A ((1<<SIZE_A)-1) |
|
66 |
#define MAXARG_B ((1<<SIZE_B)-1) |
|
67 |
#define MAXARG_C ((1<<SIZE_C)-1) |
|
68 |
|
|
69 |
|
|
70 |
/* creates a mask with `n' 1 bits at position `p' */ |
|
71 |
#define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p) |
|
72 |
|
|
73 |
/* creates a mask with `n' 0 bits at position `p' */ |
|
74 |
#define MASK0(n,p) (~MASK1(n,p)) |
|
75 |
|
|
76 |
/* |
|
77 |
** the following macros help to manipulate instructions |
|
78 |
*/ |
|
79 |
|
|
80 |
#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) |
|
81 |
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ |
|
82 |
((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) |
|
83 |
|
|
84 |
#define GETARG_A(i) (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0))) |
|
85 |
#define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \ |
|
86 |
((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A)))) |
|
87 |
|
|
88 |
#define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0))) |
|
89 |
#define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \ |
|
90 |
((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B)))) |
|
91 |
|
|
92 |
#define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0))) |
|
93 |
#define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \ |
|
94 |
((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C)))) |
|
95 |
|
|
96 |
#define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0))) |
|
97 |
#define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \ |
|
98 |
((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx)))) |
|
99 |
|
|
100 |
#define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) |
|
101 |
#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) |
|
102 |
|
|
103 |
|
|
104 |
#define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ |
|
105 |
| (cast(Instruction, a)<<POS_A) \ |
|
106 |
| (cast(Instruction, b)<<POS_B) \ |
|
107 |
| (cast(Instruction, c)<<POS_C)) |
|
108 |
|
|
109 |
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ |
|
110 |
| (cast(Instruction, a)<<POS_A) \ |
|
111 |
| (cast(Instruction, bc)<<POS_Bx)) |
|
112 |
|
|
113 |
|
|
114 |
/* |
|
115 |
** Macros to operate RK indices |
|
116 |
*/ |
|
117 |
|
|
118 |
/* this bit 1 means constant (0 means register) */ |
|
119 |
#define BITRK (1 << (SIZE_B - 1)) |
|
120 |
|
|
121 |
/* test whether value is a constant */ |
|
122 |
#define ISK(x) ((x) & BITRK) |
|
123 |
|
|
124 |
/* gets the index of the constant */ |
|
125 |
#define INDEXK(r) ((int)(r) & ~BITRK) |
|
126 |
|
|
127 |
#define MAXINDEXRK (BITRK - 1) |
|
128 |
|
|
129 |
/* code a constant index as a RK value */ |
|
130 |
#define RKASK(x) ((x) | BITRK) |
|
131 |
|
|
132 |
|
|
133 |
/* |
|
134 |
** invalid register that fits in 8 bits |
|
135 |
*/ |
|
136 |
#define NO_REG MAXARG_A |
|
137 |
|
|
138 |
|
|
139 |
/* |
|
140 |
** R(x) - register |
|
141 |
** Kst(x) - constant (in constant table) |
|
142 |
** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) |
|
143 |
*/ |
|
144 |
|
|
145 |
|
|
146 |
/* |
|
147 |
** grep "ORDER OP" if you change these enums |
|
148 |
*/ |
|
149 |
|
|
150 |
typedef enum { |
|
151 |
/*---------------------------------------------------------------------- |
|
152 |
name args description |
|
153 |
------------------------------------------------------------------------*/ |
|
154 |
OP_MOVE,/* A B R(A) := R(B) */ |
|
155 |
OP_LOADK,/* A Bx R(A) := Kst(Bx) */ |
|
156 |
OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ |
|
157 |
OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ |
|
158 |
OP_GETUPVAL,/* A B R(A) := UpValue[B] */ |
|
159 |
|
|
160 |
OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */ |
|
161 |
OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ |
|
162 |
|
|
163 |
OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */ |
|
164 |
OP_SETUPVAL,/* A B UpValue[B] := R(A) */ |
|
165 |
OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ |
|
166 |
|
|
167 |
OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ |
|
168 |
|
|
169 |
OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ |
|
170 |
|
|
171 |
OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ |
|
172 |
OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ |
|
173 |
OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ |
|
174 |
OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ |
|
175 |
OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ |
|
176 |
OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ |
|
177 |
OP_UNM,/* A B R(A) := -R(B) */ |
|
178 |
OP_NOT,/* A B R(A) := not R(B) */ |
|
179 |
OP_LEN,/* A B R(A) := length of R(B) */ |
|
180 |
|
|
181 |
OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ |
|
182 |
|
|
183 |
OP_JMP,/* sBx pc+=sBx */ |
|
184 |
|
|
185 |
OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ |
|
186 |
OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ |
|
187 |
OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ |
|
188 |
|
|
189 |
OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ |
|
190 |
OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ |
|
191 |
|
|
192 |
OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ |
|
193 |
OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ |
|
194 |
OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ |
|
195 |
|
|
196 |
OP_FORLOOP,/* A sBx R(A)+=R(A+2); |
|
197 |
if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ |
|
198 |
OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ |
|
199 |
|
|
200 |
OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); |
|
201 |
if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ |
|
202 |
OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ |
|
203 |
|
|
204 |
OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/ |
|
205 |
OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ |
|
206 |
|
|
207 |
OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ |
|
208 |
} OpCode; |
|
209 |
|
|
210 |
|
|
211 |
#define NUM_OPCODES (cast(int, OP_VARARG) + 1) |
|
212 |
|
|
213 |
|
|
214 |
|
|
215 |
/*=========================================================================== |
|
216 |
Notes: |
|
217 |
(*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1, |
|
218 |
and can be 0: OP_CALL then sets `top' to last_result+1, so |
|
219 |
next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'. |
|
220 |
|
|
221 |
(*) In OP_VARARG, if (B == 0) then use actual number of varargs and |
|
222 |
set top (like in OP_CALL with C == 0). |
|
223 |
|
|
224 |
(*) In OP_RETURN, if (B == 0) then return up to `top' |
|
225 |
|
|
226 |
(*) In OP_SETLIST, if (B == 0) then B = `top'; |
|
227 |
if (C == 0) then next `instruction' is real C |
|
228 |
|
|
229 |
(*) For comparisons, A specifies what condition the test should accept |
|
230 |
(true or false). |
|
231 |
|
|
232 |
(*) All `skips' (pc++) assume that next instruction is a jump |
|
233 |
===========================================================================*/ |
|
234 |
|
|
235 |
|
|
236 |
/* |
|
237 |
** masks for instruction properties. The format is: |
|
238 |
** bits 0-1: op mode |
|
239 |
** bits 2-3: C arg mode |
|
240 |
** bits 4-5: B arg mode |
|
241 |
** bit 6: instruction set register A |
|
242 |
** bit 7: operator is a test |
|
243 |
*/ |
|
244 |
|
|
245 |
enum OpArgMask { |
|
246 |
OpArgN, /* argument is not used */ |
|
247 |
OpArgU, /* argument is used */ |
|
248 |
OpArgR, /* argument is a register or a jump offset */ |
|
249 |
OpArgK /* argument is a constant or register/constant */ |
|
250 |
}; |
|
251 |
|
|
252 |
LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES]; |
|
253 |
|
|
254 |
#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) |
|
255 |
#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) |
|
256 |
#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) |
|
257 |
#define testAMode(m) (luaP_opmodes[m] & (1 << 6)) |
|
258 |
#define testTMode(m) (luaP_opmodes[m] & (1 << 7)) |
|
259 |
|
|
260 |
|
|
261 |
LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ |
|
262 |
|
|
263 |
|
|
264 |
/* number of list items to accumulate before a SETLIST instruction */ |
|
265 |
#define LFIELDS_PER_FLUSH 50 |
|
266 |
|
|
267 |
|
|
268 |
#endif |