hank
2016-12-14 a9a2e3b040c04c8e3b259c35e931a6349bddcd44
commit | author | age
6e1425 1 /*
H 2 ** $Id: lopcodes.h,v 1.125.1.1 2007/12/27 13:02:25 roberto Exp $
3 ** Opcodes for Lua virtual machine
4 ** See Copyright Notice in lua.h
5 */
6
7 #ifndef lopcodes_h
8 #define lopcodes_h
9
10 #include "llimits.h"
11
12
13 /*===========================================================================
14   We assume that instructions are unsigned numbers.
15   All instructions have an opcode in the first 6 bits.
16   Instructions can have the following fields:
17     `A' : 8 bits
18     `B' : 9 bits
19     `C' : 9 bits
20     `Bx' : 18 bits (`B' and `C' together)
21     `sBx' : signed Bx
22
23   A signed argument is represented in excess K; that is, the number
24   value is the unsigned value minus K. K is exactly the maximum value
25   for that argument (so that -max is represented by 0, and +max is
26   represented by 2*max), which is half the maximum for the corresponding
27   unsigned argument.
28 ===========================================================================*/
29
30
31 enum OpMode {iABC, iABx, iAsBx};  /* basic instruction format */
32
33
34 /*
35 ** size and position of opcode arguments.
36 */
37 #define SIZE_C        9
38 #define SIZE_B        9
39 #define SIZE_Bx        (SIZE_C + SIZE_B)
40 #define SIZE_A        8
41
42 #define SIZE_OP        6
43
44 #define POS_OP        0
45 #define POS_A        (POS_OP + SIZE_OP)
46 #define POS_C        (POS_A + SIZE_A)
47 #define POS_B        (POS_C + SIZE_C)
48 #define POS_Bx        POS_C
49
50
51 /*
52 ** limits for opcode arguments.
53 ** we use (signed) int to manipulate most arguments,
54 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
55 */
56 #if SIZE_Bx < LUAI_BITSINT-1
57 #define MAXARG_Bx        ((1<<SIZE_Bx)-1)
58 #define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */
59 #else
60 #define MAXARG_Bx        MAX_INT
61 #define MAXARG_sBx        MAX_INT
62 #endif
63
64
65 #define MAXARG_A        ((1<<SIZE_A)-1)
66 #define MAXARG_B        ((1<<SIZE_B)-1)
67 #define MAXARG_C        ((1<<SIZE_C)-1)
68
69
70 /* creates a mask with `n' 1 bits at position `p' */
71 #define MASK1(n,p)    ((~((~(Instruction)0)<<n))<<p)
72
73 /* creates a mask with `n' 0 bits at position `p' */
74 #define MASK0(n,p)    (~MASK1(n,p))
75
76 /*
77 ** the following macros help to manipulate instructions
78 */
79
80 #define GET_OPCODE(i)    (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
81 #define SET_OPCODE(i,o)    ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
82         ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
83
84 #define GETARG_A(i)    (cast(int, ((i)>>POS_A) & MASK1(SIZE_A,0)))
85 #define SETARG_A(i,u)    ((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
86         ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
87
88 #define GETARG_B(i)    (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
89 #define SETARG_B(i,b)    ((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
90         ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
91
92 #define GETARG_C(i)    (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
93 #define SETARG_C(i,b)    ((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
94         ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
95
96 #define GETARG_Bx(i)    (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
97 #define SETARG_Bx(i,b)    ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) | \
98         ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
99
100 #define GETARG_sBx(i)    (GETARG_Bx(i)-MAXARG_sBx)
101 #define SETARG_sBx(i,b)    SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
102
103
104 #define CREATE_ABC(o,a,b,c)    ((cast(Instruction, o)<<POS_OP) \
105             | (cast(Instruction, a)<<POS_A) \
106             | (cast(Instruction, b)<<POS_B) \
107             | (cast(Instruction, c)<<POS_C))
108
109 #define CREATE_ABx(o,a,bc)    ((cast(Instruction, o)<<POS_OP) \
110             | (cast(Instruction, a)<<POS_A) \
111             | (cast(Instruction, bc)<<POS_Bx))
112
113
114 /*
115 ** Macros to operate RK indices
116 */
117
118 /* this bit 1 means constant (0 means register) */
119 #define BITRK        (1 << (SIZE_B - 1))
120
121 /* test whether value is a constant */
122 #define ISK(x)        ((x) & BITRK)
123
124 /* gets the index of the constant */
125 #define INDEXK(r)    ((int)(r) & ~BITRK)
126
127 #define MAXINDEXRK    (BITRK - 1)
128
129 /* code a constant index as a RK value */
130 #define RKASK(x)    ((x) | BITRK)
131
132
133 /*
134 ** invalid register that fits in 8 bits
135 */
136 #define NO_REG        MAXARG_A
137
138
139 /*
140 ** R(x) - register
141 ** Kst(x) - constant (in constant table)
142 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
143 */
144
145
146 /*
147 ** grep "ORDER OP" if you change these enums
148 */
149
150 typedef enum {
151 /*----------------------------------------------------------------------
152 name        args    description
153 ------------------------------------------------------------------------*/
154 OP_MOVE,/*    A B    R(A) := R(B)                    */
155 OP_LOADK,/*    A Bx    R(A) := Kst(Bx)                    */
156 OP_LOADBOOL,/*    A B C    R(A) := (Bool)B; if (C) pc++            */
157 OP_LOADNIL,/*    A B    R(A) := ... := R(B) := nil            */
158 OP_GETUPVAL,/*    A B    R(A) := UpValue[B]                */
159
160 OP_GETGLOBAL,/*    A Bx    R(A) := Gbl[Kst(Bx)]                */
161 OP_GETTABLE,/*    A B C    R(A) := R(B)[RK(C)]                */
162
163 OP_SETGLOBAL,/*    A Bx    Gbl[Kst(Bx)] := R(A)                */
164 OP_SETUPVAL,/*    A B    UpValue[B] := R(A)                */
165 OP_SETTABLE,/*    A B C    R(A)[RK(B)] := RK(C)                */
166
167 OP_NEWTABLE,/*    A B C    R(A) := {} (size = B,C)                */
168
169 OP_SELF,/*    A B C    R(A+1) := R(B); R(A) := R(B)[RK(C)]        */
170
171 OP_ADD,/*    A B C    R(A) := RK(B) + RK(C)                */
172 OP_SUB,/*    A B C    R(A) := RK(B) - RK(C)                */
173 OP_MUL,/*    A B C    R(A) := RK(B) * RK(C)                */
174 OP_DIV,/*    A B C    R(A) := RK(B) / RK(C)                */
175 OP_MOD,/*    A B C    R(A) := RK(B) % RK(C)                */
176 OP_POW,/*    A B C    R(A) := RK(B) ^ RK(C)                */
177 OP_UNM,/*    A B    R(A) := -R(B)                    */
178 OP_NOT,/*    A B    R(A) := not R(B)                */
179 OP_LEN,/*    A B    R(A) := length of R(B)                */
180
181 OP_CONCAT,/*    A B C    R(A) := R(B).. ... ..R(C)            */
182
183 OP_JMP,/*    sBx    pc+=sBx                    */
184
185 OP_EQ,/*    A B C    if ((RK(B) == RK(C)) ~= A) then pc++        */
186 OP_LT,/*    A B C    if ((RK(B) <  RK(C)) ~= A) then pc++          */
187 OP_LE,/*    A B C    if ((RK(B) <= RK(C)) ~= A) then pc++          */
188
189 OP_TEST,/*    A C    if not (R(A) <=> C) then pc++            */ 
190 OP_TESTSET,/*    A B C    if (R(B) <=> C) then R(A) := R(B) else pc++    */ 
191
192 OP_CALL,/*    A B C    R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
193 OP_TAILCALL,/*    A B C    return R(A)(R(A+1), ... ,R(A+B-1))        */
194 OP_RETURN,/*    A B    return R(A), ... ,R(A+B-2)    (see note)    */
195
196 OP_FORLOOP,/*    A sBx    R(A)+=R(A+2);
197             if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
198 OP_FORPREP,/*    A sBx    R(A)-=R(A+2); pc+=sBx                */
199
200 OP_TFORLOOP,/*    A C    R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); 
201                         if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++    */ 
202 OP_SETLIST,/*    A B C    R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B    */
203
204 OP_CLOSE,/*    A     close all variables in the stack up to (>=) R(A)*/
205 OP_CLOSURE,/*    A Bx    R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))    */
206
207 OP_VARARG/*    A B    R(A), R(A+1), ..., R(A+B-1) = vararg        */
208 } OpCode;
209
210
211 #define NUM_OPCODES    (cast(int, OP_VARARG) + 1)
212
213
214
215 /*===========================================================================
216   Notes:
217   (*) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
218       and can be 0: OP_CALL then sets `top' to last_result+1, so
219       next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
220
221   (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
222       set top (like in OP_CALL with C == 0).
223
224   (*) In OP_RETURN, if (B == 0) then return up to `top'
225
226   (*) In OP_SETLIST, if (B == 0) then B = `top';
227       if (C == 0) then next `instruction' is real C
228
229   (*) For comparisons, A specifies what condition the test should accept
230       (true or false).
231
232   (*) All `skips' (pc++) assume that next instruction is a jump
233 ===========================================================================*/
234
235
236 /*
237 ** masks for instruction properties. The format is:
238 ** bits 0-1: op mode
239 ** bits 2-3: C arg mode
240 ** bits 4-5: B arg mode
241 ** bit 6: instruction set register A
242 ** bit 7: operator is a test
243 */  
244
245 enum OpArgMask {
246   OpArgN,  /* argument is not used */
247   OpArgU,  /* argument is used */
248   OpArgR,  /* argument is a register or a jump offset */
249   OpArgK   /* argument is a constant or register/constant */
250 };
251
252 LUAI_DATA const lu_byte luaP_opmodes[NUM_OPCODES];
253
254 #define getOpMode(m)    (cast(enum OpMode, luaP_opmodes[m] & 3))
255 #define getBMode(m)    (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
256 #define getCMode(m)    (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
257 #define testAMode(m)    (luaP_opmodes[m] & (1 << 6))
258 #define testTMode(m)    (luaP_opmodes[m] & (1 << 7))
259
260
261 LUAI_DATA const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */
262
263
264 /* number of list items to accumulate before a SETLIST instruction */
265 #define LFIELDS_PER_FLUSH    50
266
267
268 #endif